CPE/EE 422/522
L12
Advanced Logic Design
Electrical and Computer Engineering
University of Alabama in Huntsville

Outline

- What we know
- How to model Combinational Networks in VHDL
- Structural, Dataflow, Behavioral
- How to model Flipflops in VHDL
- Processes
- Delays (delta, transport, inertial)
- How to model FSM in VHDL
- Wait statements
- Variables, Signals, Arrays
- What we do not know
- VHDL Operators
- Procedures, Functions
- Packages, Libraries
- Additional Topics (if time)

07/07/2003 UAH-CPE/EE 422/522 @AM

LAB 4: Keypad Scanner

- Lab4 preparation material
- Telephone keypad scanner
- Section 3.5 in the textbook
- Implemented using PLD (not relevant for you)

LAB 4: Block Diagram

- Keypad is wired in matrix form
- switches are at the intersections of rows and columns
- Assumption: only one key is pressed at time
- $\mathrm{N}=\mathrm{N} 3 \mathrm{~N} 2 \mathrm{~N} 1 \mathrm{~N} 0$
- 0-0000

LAB 4: Scan Procedure

1. Apply logic 1 s to columns C0, C1, C2 and wait
2. If any key is pressed
a 1 will appear on R0, R1, R2, or R3
3. Apply 1 to column C0 only; if any of Ri's is 1 , a valid key is detected; set $\mathrm{V}=1$ and corresponding N
4. If no key is detected in column C0 apply 1 on C 1 ; Repeat the same for C2
5. When a valid key is detected, apply 1 s to $\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2$ and wait until no key is pressed

- ensure that only one valid signal is generated each time a key is pressed

$07 / 07 / 2003$	UAH-CPE/EE 422/522 ©AM	5

LAB 4: Debouncing

- Problem: with mechanical switch the contact will bounce causing noise in the switch output
- contact may bounce for several milliseconds

- Solution: after a switch closure has been detected, wait for bounce to settle down before reading the key

07/07/2003 UAH-CPE/EE 422/522 @AM
6

Review: VHDL Functions

- Functions execute a sequential algorithm and return a single value to calling program

function rotete right (reg: bil wector)

return bl vectar is
begin
return rey ror 1 ;
end rotate night:

- $A=" 10010101 "$
$B<-\operatorname{rotate}$ right (A);
- General form
function function-name \{formal-parameter-list\}
return retum-type is
[dedarations]
begin
sequential statements -- must include return retum-value; end function-name;

07/07/2003
UAH-CPE/EE 422/522 ©AM

Review: For Loops

General form of a for loop:
[loop-label:] for loop-index in range loop sequential statemests
end loop [loop-label]; Exit statement has the form:
exit;
-- or
exit when condition:

For Lonn Example:

- compare two 8-character scrings and return TRUE if equa
function comp.string(string1, string2: string(1 to 81)
return bodesn is
wariable B: boolean!
begis
loupex: for j in 1 to 8 loop
B:\% stringl (d) = string2(d):
exit when B-FALLE:
end loop looper,
return B;
end comp_string:
07/07/2003
UAH-CPE/EE 422/522 ©AM

Review: VHDL Procedures

- Facilitate decomposition of VHDL code into modules
- Procedures can return any number of values using output parameters
- General form

```
procedure procedure_name (formal-parameter-list) is
    [declarations]
    begin
            Sequential-statements
        end procedure_name;
```

 procedure_name (actual-parameter-list);
 07/07/2003 UAH-CPE/EE 422/522 ©AM

Review: Parameters for Subprogram Calls

		Actual Parameter	
	Class	Procedure Call	Function Call
in 1	constant		
	signal	expression	expression
	variable	signal	vignal
out/inout	signal	signale	n / a
	variable	variable	n / a
		n / a	

${ }^{3}$ defaut mode for functiong ${ }^{2}$ default for in mode ${ }^{3}$ default for outinout mode

07/07/2003 UAH-CPE/EE 422/522 @AM
14

Packages and Libraries

- Provide a convenient way of referencing frequently used functions and components
- Package declaration

> package package-name is
> package declarations
> end [package)[package-name]i

- Package body [optional]
package body package-name is
package body dedarations
end [package body][packoge name];

Library BITLIB - bit_pack package

```
maikmp le cook is
```



```
    reourn Scsearl:
    rewure tooven, (a mal ononte
    funtere necavivecal DCvedom?
    function int2wesirl1, bas ietrge)
    roburs >t -actor
    procedere kosem
```



```
        Con tatul
        sonal covt actur
        n:in Emava|
    componert ov
```



```
ensememporect
ceeperemt or
```



```
    end csesponset,
```

 07/07/2003

Additional Topics in VHDL

- Attributes

- Transport and Inertial Delays
- Operator Overloading
- Multivalued Logic and Signal Resolution
- IEEE 1164 Standard Logic
- Generics
- Generate Statements
- Synthesis of VHDL Code
- Synthesis Examples
- Files and Text IO

07/07/2003
UAH-CPE/EE 422/522 ©AM

Signal Attributes

Attributes associated with signals	
	that return a value
Aturite	Beturns
STVENT	True if an event scoumst aiving the currerk delsa, else fatse
Sactive	Trum if a fromazhon accieried laring the ourrent delts, the folse
SLAST_EVEVT	The elsosed since the srevious evest ons
SLast_unue	Volue of S tefore the presious evert on 5
SLAST_ACTIVE	Teme alippud sirce praviase trimaction on 5

A'event - true if a change in S has just occurred
A'active - true if A has just been reevaluated, even if A does not change

Signal Attributes (contd)

- Event

- occurs on a signal every time it is changed
- Transaction
- occurs on a signal every time it is evaluated
- Example:

$$
\mathrm{A}<=\mathrm{B}--\mathrm{B} \text { changes at time } \mathrm{T}
$$

Signal Attributes (contd)

Examples of Signal Attributes


```
metity imer er bs
```



```
end attr_ex:
erchitecture besk of abs_ex is
    signal ג, C, doluyads, A_trana : bit;
    sigal A satlic5, A ouet5; boovas,
bugin
    A <= B and C
    C_wleymd5 < co coviayud!5 ma);
    Citrans <" Atransaction;
    A_vabie5 = = hivablelS
    A.quicts <n Alquinf[5 msi)
end test:
```


Using Attributes for Error Checking

```
check: process
```

begin
wait until rising_edge (Clk);
assert (D^{\prime} stable (setup_time))
report ("Setup time violation")
severity error;
wait for hold_time;
assert (D^{\prime} stable (hold_time))
report ("Hold time violation")
severity error;
end process check;
07/07/2003 UAH-CPE/EE 422/522 @AM 26

Assert Statement

assert boolean-expression report string-expression severity severity-level

- If boolean expression is false display the string expression on the monitor
- Severity levels: Note, Warning, Error, Failure

Array Attributes

Operator Overloading

- Operators +, - operate on integers
- Write procedures for bit vector addition/subtraction - addvec, subvec
- Operator overloading allows using + operator to implicitly call an appropriate addition function
- How does it work?
- When compiler encounters a function declaration in which the function name is an operator enclosed in double quotes, the compiler treats the function as an operator overloading ("+")
- when a " + " operator is encountered, the compiler automatically checks the types of operands and calls appropriate functions

$07 / 07 / 2003$	UAH-CPE/EE 422/522 ©AM	33

Overloaded Operators

- A, B, C - bit vectors
- $A<=B+C+3$?
- $A<=3+B+C$?
- Overloading can also be applied to procedures and functions
- procedures have the same name -
type of the actual parameters in the procedure call determines which version of the procedure is called

VHDL Package with Overloaded Operators

- This package provide two overloaded functions for the plans operator
package by sector is

function ", Adit ot vector; A392: wheown retum bit rester;
Horary stupe
use Biruspl peon
package ace dy betanetcas is

variable c be : $-\sigma_{\text {; }}$;

begin
sm pow reverse range leap
 and too

 begin
rebuma /Ne di + retivec|ndaz, Aeblliengthon
——— ens te_owerloud:
07/07/2003 UAH-CPE/EE 422/522 ©AM

Multivalued Logic

- Bit $(0,1)$
- Tristate buffers and buses => high impedance state 'Z'
- Unknown state 'X'
- e. g., a gate is driven by ' Z ', output is unknown
- a signal is simultaneously driven by ' 0 ' and ' 1 '

UAH-CPE/EE 422/522 ©AM

Signal Resolution

- VHDL signals may either be resolved or unresolved
- Resolved signals have an associated resolution function
- Bit type is unresolved -
- there is no resolution function
- if you drive a bit signal to two different values in two concurrent statements, the compiler will generate an error

07/07/2003
UAH-CPE/EE 422/522 @AM
38

Resolution Function for X01Z

subtype x 012 is nochet o ouls

package baey bupack is

oegin (rangut =1) then
retarn a|rion)|;
ebe ter its siange tasp
 end iecog
and if: and if;
return revit
-ene humack:

AND and OR Functions Using X01Z

AND	'X'	'0'	'1'	'Z'
'X'	'X'	'0'	'X'	'X'
'0'	'0'	'0'	'0'	'0'
'1'	' X '	'0'	'1'	' ${ }^{\prime}$
'Z'	'X'	'0'	'X'	'

OR	'X'	'0'	'1'	'Z'
' X '	'X'	'X'	'1'	'X'
'0'	'X'	'0'	'1'	'X'
'1'	'1'	'1'	'1'	'1'
'Z'	' X '	' X '	'1'	'X'

IEEE 1164 Standard Logic

- 9-valued logic system
- 'U' - Uninitialized
- 'X' - Forcing Unknown
- ' 0 ' - Forcing 0
- '1' - Forcing 1
- 'Z' - High impedance
- 'W' - Weak unknown
- 'L' - Weak 0
- 'H' - Weak 1
- '-' - Don't care

If forcing and weak signal are tied together, the forcing signal dominates.

Useful in modeling the internal operation of certain types of ICs.
In this course we use a subset of the IEEE values: X10Z

